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Abstract

Private wide-area networks (WANs) deployed by large cloud
providers enable them to offer predictable bandwidth and
latency to their tenants, in contrast to the public Internet. To
maximize the WAN’s utilization, instead of statically reserv-
ing capacity for every tenant, cloud providers dynamically
control what traffic is admitted onto the network. But, the
availability of promised bandwidth suffers as a result, since
a global control plane is fundamentally slow in reacting to
changes in traffic demands at scale.

To ensure that efficiency does not come at the expense of
predictability, we present HEYP, our new architecture for pri-
vateWANs. Our high-level approach is that, when any tenant
is allowed to send more than its guaranteed bandwidth, its
surplus traffic is admitted at a lower quality-of-service (QoS)
level. Doing so enables tenants to opportunistically utilize
spare capacity without impacting the availability of band-
width promised to other tenants. However, to fully realize
the promise of this approach, we show that one must rethink
how traffic is routed across the WAN and account for how
congestion control as well as applications will react to QoS
changes. Our simulations using traces from a large global,
private WAN suggest that HEYP would offer 99% availability
for 10× as many bandwidth guarantees as state-of-the-art
WAN designs without sacrificing efficiency.

1 Introduction

The public Internet offers no performance guarantees. There-
fore, many large cloud providers have deployed their own
private wide-area networks (WANs) [16, 38, 40, 43], wherein
they provision appropriate network capacity to offer pre-
dictable wide-area bandwidth and latency to tenants under
a range of failure scenarios and communication patterns.
Additionally, via admission control [46] and judicious rout-
ing [38, 40], the cloud provider can limit bandwidth interfer-
ence among tenants.
Since services do not always send traffic at their peak

rate, statically configuring a WAN to reserve the bandwidth
promised to each tenant and preventing tenants from sending
at a higher rate will result in poor network utilization. Cloud
providers instead leverage their centralized control of their
WANs to dynamically reconfigure routes and admission rate
limits in reaction to changes in traffic demands [38, 40, 46].
Based on its global view, a central controller can ensure that
any unused capacity that remains after admitting guaranteed
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demands for bandwidth is shared among tenants’ surplus
demands as per its business policy. Our simulations using
data from BigCloud’s large global, private WAN show that
such an approach can satisfy 50% more of the traffic demands
on average compared to static approaches.
Current WAN architectures for improving network uti-

lization in this manner, however, significantly hamper pre-
dictability. For example, in the above-mentioned simulations,
dynamically allocating bandwidth offers 99% or higher avail-
ability to 10× fewer bandwidth guarantees, as compared to
static reservation. A key cause for this dramatically lower
predictability is that, to use the bandwidth promised to it,
a tenant has to often wait for the central global controller
to throttle previously admitted surplus demands of other
tenants and reconfigure routes. This is problematic because
the speed with which a central controller can react to de-
mand changes is fundamentally limited by two factors: 1) the
extremely large scale of global WANs [34, 40, 44, 46, 52], and
2) the need to sequentially apply routing changes in order
to prevent inconsistency in routing configurations across
switches in the network [38]. These sources of delay will
only worsen over time since cloud providers are constantly
expanding the number of sites in their WAN [39, 45, 53, 61],
and it often takes multiple rounds of reconfigurations for
the global controller to correctly estimate and accommodate
a tenant’s true demand.

To remove this dependence on the global controller for en-
suring predictable performance, we argue that any tenant’s
surplus demands should explicitly be treated differently, and
admitted at a lower quality-of-service (QoS) level. When a
tenant ramps up its bandwidth usage while staying within its
bandwidth guarantee, we can then rely on switches to prior-
itize its traffic, instead of having to reduce the admission for
other tenants utilizing spare capacity. Consequently, global
control delays no longer affect the cloud provider’s ability to
satisfy bandwidth guarantees. With this approach, a tenant
bears the risk that its excess traffic is more susceptible to
congestion. But, it is, after all, utilizing more bandwidth than
was promised to it.

We realize this promise of using QoS downgrade with
HEYP (for Highly Efficient, Yet Predictable), our new control
plane architecture for private WANs. Our design addresses
three challenges that are unique to large cloud provider
WANs compared to prior work which has used this approach
to offer bandwidth guarantees on the public Internet [22, 23].
First, we show that the use of QoS downgrade calls for a

change in how the global controller computes routes, com-
pared to the status quo [38, 40]. A single tenant’s demand
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is often large enough that capacity from multiple routes
must be dedicated to its traffic. Spreading a tenant’s high
and low priority traffic in the same proportion among all the
routes for this tenant constrains which routes can be used
to carry low priority traffic, consequently limiting network
utilization. Therefore, HEYP installs separate paths for each
tenant’s promised and surplus bandwidth: stable paths for
the former on which capacity is guaranteed irrespective of
other tenants’ demands, and periodically recomputed paths
for the latter to opportunistically utilize unused capacity.

Second, the consequence of using separate paths for high
and low priority traffic is that the subset of a tenant’s flows
which are downgraded cannot be independently determined
in each control period. Since latency varies across routes,
TCP’s congestion control will degrade the performance of
any flow which keeps flip-flopping between QoS levels. But,
pinning each flow to a specific QoS for a set amount of time
limits our ability to respond to demand changes. Instead, we
introduce caterpillar hashing, a flow selection mechanism
designed to maximize QoS stability. Whenever we need to
decrease the fraction of a tenant’s traffic that is downgraded,
we do so by upgrading the last-downgraded flow, and vice
versa to increase the fraction downgraded.

Lastly, in contrast to when every tenant is capped at the
bandwidth promised to it, an applicationmay respond to QoS
downgrade of its surplus traffic by shifting load towards that
subset of its tasks which offer better performance. Since these
tasks are more likely to be the ones permitted to send high
priority traffic, the net result will be the application sending
more high priority traffic than allowed. In response, we can
change the QoS assignment, but the application will again
react to this change. To converge to a stable QoS assignment
for any tenant’s traffic, HEYP attempts to identify that subset
of the tenant’s flows which, if admitted at high priority,
cannot ramp up any further due to bottlenecks other than
WAN link capacity (e.g., host CPU or NIC).

We evaluate HEYP using testbed experiments and simu-
lations. In our simulations driven by traces obtained from
BigCloud, HEYP matches the efficiency obtainable with dy-
namic bandwidth allocation, and it delivers the availability
of bandwidth guarantees afforded by static approaches. We
observe similar results when we apply our prototype to an
application workload. Tenants that are within their band-
width guarantees are unaffected by those who have excess
traffic, and applications which utilize spare capacity achieve
throughput that is within 12% of an optimal approach. Our
testbed prototype is open source and will be made available
following the publication of this work.
Ethics: This work does not raise any ethical issues.

2 Setting and Motivation

We focus on settings where a WAN administered by a single
organization is shared by many tenants. In this setting, we
aim to satisfy four goals.
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Figure 1: Architecture of a software-defined WAN.

1. Provide predictability by satisfying bandwidth ap-

provals. Based on every tenant’s anticipated needs, the
provider approves a certain level of bandwidth per tenant be-
tween source and destination data centers; we refer to each
(𝑡𝑒𝑛𝑎𝑛𝑡, 𝑠𝑟𝑐, 𝑑𝑠𝑡) tuple as a flowgroup. An approval per flow-
group enables more judicious capacity planning compared
to guaranteeing every tenant bandwidth in and out of each
data center irrespective of its communication pattern [26].
Every approval comes with an associated SLO for the

availability of the approved bandwidth, and optionally with
guarantees on the length of paths used to route it. A higher
availability SLO calls for more redundant bandwidth on the
appropriate links to cope with failures; but, in this paper,
we consider all approvals as having the same SLO, and we
discuss support for multiple SLO levels in §6. We assume
approvals are not oversubscribed, so all approvals will be
satisfiable as long as the capacity lost due to failures is within
the bounds that the network provider wishes to tolerate.
While there exists prior work for making bandwidth ap-

provals resilient to failures [20, 50, 63], we focus on the more
commonly occurring risk: rapidly-changing traffic demands.
2. Improve network efficiency by accommodating op-

portunistic transfers. Our secondary objective is to admit
as much of each flowgroup’s demand as feasible; a flow-
group’s demand is the bandwidth it will consume given infi-
nite WAN capacity. The network should typically be able to
admit some above-approval demands as it must have spare
capacity to tolerate failures, and tenants do not always fully
utilize their approvals. Admitting above-approval demands
also reduces the risk associated with under-estimation of
desired bandwidth. To prevent tenants from becoming de-
pendent on work-conserving bandwidth, they can either be
charged for its use [54] or every flowgroup can occasionally
be capped at its approval even if there is spare capacity.
3. Support flexible traffic engineering and bandwidth

sharing policies. Network policies are rich [46], vary across
providers [33, 38, 40, 48, 50], and evolve over time [39]. For
example, traffic engineering policies face a tension between
optimizing for latency or balanced load, and providers have
to choose tradeoffs that are appropriate for their workloads
and topology. Rather than dictating particular traffic engi-
neering or bandwidth sharing policies, we aim to be flexible
outside of the goals set forth in this section.
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Figure 2: An example where dynamic control prematurely throttles traffic and static allocation fails to fully use network

capacity. All links have 10 Gbps capacity. Approvals for both A→C and B→C are 10 Gbps. Initial demands (top) are 20 Gbps

for A→C and 5 Gbps for B→C. After limiting it to send atmost 15 Gbps, Dynamic sends 33% of A→C’s traffic through B and the

remaining 67% directly to C. This allows it to fully utilize the network. Later (bottom), when B→C’s demand rises to 10 Gbps,

Static admits the increased within-approval demand but Dynamic does not. HEYP provides the best of both: it fully utilizes

the network with the initial demands and later accommodates the increased demand for B→C.

4. Maintain compatibility with TCP. As it is the most
widely-used transport protocol, maintaining compatibility
with TCP is necessary to avoid breaking applications. This
restriction rules out certain design choices, e.g., because TCP
requires most packets to be delivered in order, we cannot
spray packets that belong to the same connection over mul-
tiple paths which differ in end-to-end latency.

2.1 Dynamic control across and in data centers

To meet these goals, current WANs are architected as shown
in Figure 1. Within each data center, a DC controller collects
bandwidth usage statistics for each flowgroup, aggregating
measurements across tasks; we consider each instance of an
application (i.e., a container or virtual machine) as a set of
tasks, where each task sends traffic to a specific DC. From
these usage statistics, the controllers estimate each flow-
group’s demand, e.g., by taking the maximum usage across
the past 90 seconds and inflating it by 10% [46]. Using these
demand estimates along with the current topology, a global
controller periodically adjusts routes to better satisfy de-
mands and determines per-flowgroup admissions [46, 55]
(i.e., how much aggregate bandwidth to admit for each flow-
group); in practice, separate global controllers may be used
for routing and admission control [40, 46]. The DC con-
trollers divide any flowgroup’s admission across its tasks and
continuously revise this split as demands change. Each task
paces its sending rate so as to stay within the programmed
rate limit [38, 46, 62].

A key advantage of this approach, compared to distributed
approaches such as RSVP-TE [17], comes from the central
controller’s global visibility. When the network is unable
to completely satisfy all demands, the global controller can
easily enforce any bandwidth sharing policy desired by the
network provider. These include, but are not limited to, allo-
cating bandwidth to tenants in proportion to their payments,
max-min fairness, and maximizing throughput.

2.2 Global control delays are a key bottleneck

To understand the sensitivity of dynamic control to delay,
consider the example in Figure 2. For simplicity, we ignore
failures and route each flowgroup’s traffic over the shortest
path. If that does not provide enough capacity, we recursively
add the next shortest path to the flowgroup’s routes.
With Dynamic (left), the global controller first satisfies

within-approval demands; it allocates the shortest path for
each approval and sets the admissions to 10 Gbps for A→C
and 5 Gbps for B→C. It then allocates leftover capacity to
surplus demands; it installs a second route for A→C to utilize
the spare capacity between B and C, and increases A→C’s
admission to 15 Gbps.
Although the configuration chosen by Dynamic maxi-

mizes demand satisfaction, it risks violating B→C’s approval
if its demand rises above 5 Gbps. Existing systems which use
Dynamic’s approach (such as B4 [40, 46] and SWAN [38]),
therefore, project demand to be higher than the current
usage, e.g., by inflating the usage by 10% [46]. However,
this is insufficient to prevent approval violations when de-
mands rise sharply between global reconfigurations (e.g.,
when B→C’s demand increases from 5 to 10 Gbps). Multiple
iterations of global reconfiguration are necessary in such
cases, since each one only increases the admission by 10%.
One could mitigate the risk of approval violations by im-

proving the responsiveness of Dynamic’s global controller,
but achieving this is an uphill battle.
• First, there is the issue of scale. The speed with which a
global controller can act is fundamentally limited by the
scale of a global WAN [46] and the need to sequence rout-
ing updates to avoid congestion [38], e.g., routing changes
may require tens of seconds to minutes to complete [50].
In addition, the input size to the global controller is rapidly
growing. Several large content and cloud providers have
added 50–100% more nodes to their WAN over the last 2–6

3



years [31, 39, 40, 45, 61], and the number of flowgroups
grows quadratically in relation to this.
• Second, when the global controller is unavailable, the re-
maining network components continue to use the last
known state [28, 38, 40, 43, 46]. Data from production net-
works suggests that failures can lead to frequent and long
delays. An analysis [30] of over 100 failures in Google’s
networks attributes 9% of failures to unavailability of the
WAN control plane. In 2019, an especially long incident [4]
brought down the control plane of Google’s backbone net-
work for over four hours and caused up to 100% packet
loss on certain links.
An alternative approach that eliminates the need for a

responsive controller entirely is to use a static configuration
that only aims to satisfy approvals. In our example, Static
(Figure 2 center) will satisfy the approvals by setting the
admissions for both flowgroups to 10 Gbps and configuring
each to use only their direct path. Although Static does not
take into account either flowgroup’s demand at the global
level, the DC controller within each data center must dynam-
ically redistribute the admission for each flowgroup across
its tasks. The DC controller can react more quickly than the
global controller (Appendix C, see also [38, 46]), and is not a
significant source of approval violations. As a result, Static
ensures that approvals are satisfied regardless of the demand
matrix, but it does not admit any above-approval demand.
In §5.1, we quantify the tradeoff between approval and

demand satisfaction using the two approaches. The results
match the intuition presented here. Static achieves high ap-
proval satisfaction and Dynamic provides high demand sat-
isfaction, but each performs poorly in the other metric.

3 Approach and Challenges

To balance the satisfaction of both approvals and demands,
the question at hand is: how to retain the benefits of central-
izedWAN control (i.e., better network utilization and support
for flexible bandwidth sharing policies) while addressing its
adverse impact on satisfying bandwidth approvals?

Our high level insight is that modifying routes and admis-
sions are not the only measures available in our toolkit for
reacting to congestion. In addition, we can leverage support
within the network data plane to prioritize the delivery of
packets marked with a higher QoS value. This feature can
be used to satisfy approvals without involving the global
controller, except to handle failures.

A natural approach for using this capability would work as
follows. In the common case, the global controller will set the
admission for every flowgroup to at least be its approval. Any
additional traffic admitted onto the network (to utilize spare
capacity) will have its QoS reduced to a lower priority (LO-
PRI). Any flowgroup’s ability to increase its within-approval
demand will then not depend on the global controller’s abil-
ity to react. Instead, network switches will strictly prioritize
the delivery of its higher-priority (HIPRI) traffic over any

competing above-approval, LOPRI traffic (we discuss other
prioritization policies in §6). We would rate limit LOPRI traf-
fic to avoid excessive loss and to ensure that distribution of
spare bandwidth is as per business policy.
While this approach shows promise, we need to address

three challenges: one on global control and two on control
within each data center.
Sharing routes limits efficiency. Each flowgroup’s traffic
is divided across the routes installed for it in proportion
to their weights. When the global controller wants to add
an additional path to support, say one-fourth of the above-
approval demand, the new path must also admit a quarter
of the approval. How should we allocate routes so that this
restriction does not limit the efficiency of the network?
QoS churn interacts poorly with congestion control.

Each time HEYP migrates a particular TCP flow from HIPRI
to LOPRI (or vice versa), it risks changing the RTT for that
connection. Such changes, if they occur frequently, will ham-
per TCP’s ability to accurately estimate the bandwidth-delay
product, thereby preventing it from fully utilizing available
network bandwidth. Therefore, in determining what frac-
tion of a flowgroup’s traffic to downgrade, how can the DC
controller minimize QoS churn for individual flows?
Uneven bandwidth distribution can lead to harmful

app–DCcontroller interactions. WhenHEYP downgrades
the QoS for part of a flowgroup, the application may, due to
congestion, observe worse throughput on its LOPRI flows
compared to its HIPRI ones. The application could react by di-
recting more load to its tasks which provide faster responses.
As a result, the flowgroup might send more HIPRI traffic
than its approval allows and potentially interfere with the
approvals of other flowgroups. The DC controller will react
by downgrading a different subset of the flowgroup’s traffic,
but of course, the application can again respond by shift-
ing load. To avoid adverse impact on both the flowgroup in
question (unnecessary QoS churn) and other flowgroups (ap-
proval violations), how do we ensure that the DC controller
converges quickly to a stable QoS assignment that admits
only the approval at HIPRI?

4 Design

In this section, we explain how HEYP addresses each of the
above-mentioned concerns. HEYP’s design is tailored to the
needs of large cloud providers. In aiming to satisfy the goals
set out in §2, it provides the following key properties.
• Under planned failure scenarios, each flowgroup can ramp

up its usage to its approval without any reaction from the
global or DC controllers. Within-approval traffic will use
paths that meet the specified latency SLO.
• Once a flowgroup exceeds its approval, HEYP will down-
grade the flowgroup’s excess traffic to LOPRI and rate
limit it. The LOPRI routes and admissions are determined
using dynamic global control to maximize efficiency.
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Inputs: Approvals and demands per flowgroup
Topology annotated with link capacities

Outputs (per flowgroup):

Set of HIPRI routes and set of LOPRI routes
HIPRI admission and LOPRI admission

1. Compute HIPRI routes and admissions to satisfy
approvals

2. Compute unused link capacity by deducting any link
capacity consumed by within-approval demands

3. Compute LOPRI routes and admissions to satisfy
above-approval demands

Algorithm 1: Global computation of routes and admis-

sions. Steps 1 and 3 follow provider’s allocation policy.

• To avoid degrading the performance of applications that
have part of their traffic downgraded to LOPRI, HEYP
maximizes the minimum time each task spends at a par-
ticular QoS. Applications that want to make the best use
of the available LOPRI bandwidth should internally divert
work away from bottleneck tasks. Many existing appli-
cations – e.g., HTTP proxies [8, 13], bulk data copies [7],
and others [1, 9, 11, 12] – have this capability.
• HEYP’s DC controller is biased to over-admit HIPRI traf-
fic when usage is concentrated across a small number of
tasks. Network operators can account for this by provi-
sioning additional headroom (§4.3). For cloud WANs, we
expect that approvals will be large enough for the required
headroom to be low.

4.1 Separate HIPRI and LOPRI routes for efficiency

To appreciate why the use of QoS downgrade necessitates a
change in the global controller’s routing strategy, consider
the example from Figure 2. To accommodate 15 Gbps of
A→C’s demand, existing ‘Dynamic’ controllers would com-
pute and install two routes: one along the direct path and
one along the indirect path via B, with the former set to carry
one-third of the flowgroup’s traffic and the latter two-thirds.
If we admit 10 Gbps of A→C’s traffic on HIPRI, since that
is its approval, then 6.6 Gbps of A→C’s HIPRI traffic would
go over A-C and 3.3 Gbps over A-B-C. When B→C’s within-
approval usage increases, we risk violating its approval as it
will compete for capacity with A→C’s HIPRI traffic.

The problemhere is that, if bothwithin- and above-approval
traffic are split in the same proportion across paths, we can-
not simultaneously satisfy the two properties we want: 1)
within-approval demands must be met irrespective of other
flowgroups’ demands, e.g., A→C should not route within-
approval traffic over A-B-C, and 2) above-approval traffic
should be able to use any link capacity that is unused by
other flowgroups; this constraint is opposite to the previous
one: A→C’s above-approval traffic must go over A-B-C.
To resolve this issue, in HEYP, we compute multiple sets

of paths per flowgroup that each meet one of these objec-
tives. We route each flowgroup’s within-approval traffic in
a manner that statically guarantees no interference with
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Figure 3: Allocation for three flowgroups from data cen-

ters A to B over a direct link of capacity 150 Gbps. Each has

a 50 Gbps approval, and demands (in Gbps) are [FG1: 60, FG2:

20, FG3: 80]. In Phase 1, all three approvals fit. Phase 2 dis-

tributes 30 Gbps of FG2’s unused allocation fairly between

FG1 and FG3. The rest of FG3’s demand is left unsatisfied.

other within-approval traffic. Additionally, we ensure that
the routes for above-approval traffic make use of any spare
capacity on the network. In our example, we send 10 Gbps of
A→C’s HIPRI traffic over A-C, and 5 Gbps of A→C’s LOPRI
traffic over A-B-C. When B→C’s demand rises to 10 Gbps,
it takes priority over A→C’s LOPRI above-approval traffic.
Since A→C now sends HIPRI traffic only over the direct link
to C, both approvals are satisfied.
Global allocation framework. HEYP determines the sets
of paths and admissions for each flowgroup as follows. To
support many traffic engineering bandwidth sharing policies,
HEYP uses existing algorithms as black box functions to pro-
vide capacity to within-approval (HIPRI) or above-approval
(LOPRI) traffic. Within a particular QoS level, these functions
are free to enforce their own policies.
In existing systems, the global WAN controller [38, 40]

computes routes for a particular traffic demand matrix in
two phases: 1) fit all within-approval demands, and 2) based
on the provider’s bandwidth sharing policy, accommodate as
much above-approval demands as feasible given the capacity
that remains. The routes for every flowgroup comprise the
union of the routes computed in the two phases and the
admission is the sum of capacity allocated on each route.

HEYP’s global controller similarly executes in two phases,
but both phases differ (Algorithm 1) and the outputs of each
phase apply separately to either HIPRI (i.e., within-approval)
or LOPRI (i.e., above-approval) traffic.
• Phase 1: Match Static’s approval satisfaction. First, to

ensure that flowgroups can burst up to their approvals, we
compute HIPRI routes to fit all approvals, not just within-
approval demands, while ensuring that path lengths are
within guaranteed bounds (§2). In the unlikely scenario
that more capacity is lost due to failures and maintenance
than what the provider planned for, capacity is shared
according to policy (e.g., max-min fairness).
• Phase 2:MatchDynamic’s demand satisfaction.Next,
we determine additional routes based on observed demand.
The key is to compute the capacity consumed by Phase 1
based on within-approval demands, not approvals. With
this, HEYP admits the same volume of above-approval
demands as Dynamic. Moreover, when Phase 1 is unable
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to fit all approvals into the network, HEYP can admit addi-
tional within-approval traffic in this second phase, thereby
surpassing Static with respect to approval satisfaction.
In achieving these desirable properties, we are oversub-

scribing link capacities: HEYP allocates routes based on ap-
provals in Phase 1 but computes the capacity consumed by
these routes based on within-approval demands. However,
when a link’s capacity is oversubscribed, HIPRI traffic will
be preferentially delivered, thus ensuring that congestion
has no impact on approval satisfaction. HEYP never oversub-
scribes link capacity in Phase 1 to ensure that an increase in
one flowgroup’s within-approval demand does not impact
the ability to satisfy approvals for other flowgroups. Figure 3
illustrates how the HEYP controller separately computes
HIPRI and LOPRI admissions.
Mitigating switch limitations. The degree towhichHEYP
oversubscribes link capacities is configurable: in Phase 2, the
available capacity on each link can be set such that the sum
of HIPRI and LOPRI admissions do not exceed a configurable
multiple of the link’s capacity. For network switches that
share buffers between per-QoS queues, this can be used to
reduce HIPRI packet drops under a flood of LOPRI traffic.

4.2 Minimizing QoS churn with caterpillar hashing

Once the global controller has determined the HIPRI and LO-
PRI admissions for a particular flowgroup, the DC controller
must assign a QoS level for each of the flowgroup’s flows, i.e.,
each (src IP, src port, dst IP, dst port, protocol) 5-tuple. For
this, it first needs to measure the total usage of the flowgroup,
and then identify a subset of flows to downgrade such that
the sum usage of the remaining flows equals the approval.
Need tominimizeQoS churn. A straightforward approach
for picking flows to downgrade would be to use a knapsack
solver to identify a set of flows whose aggregate usage is
closest to the flowgroup’s current usage minus the HIPRI
admission. However, knapsack solvers make no effort to
maintain stable QoS assignments across multiple runs, harm-
ing application performance. Every time the QoS assigned to
a flow is changed, its bandwidth and latency characteristics
change as well. If TCP’s congestion control is unable to adapt
quickly enough, application performance suffers.
Figure 4 demonstrates the impact of frequently chang-

ing QoS between backend servers in one data center and
an HTTP proxy in another (see §5.2 for details). Both the
latency (90%ile of 600 ms vs 95 ms) and throughput (mean
19K req/s vs 21K req/s) seen by the clients suffer, when com-
pared to scenarios where every flow is pinned to a specific
QoS level. The reason for this degradation is that BBR [21],
the congestion control used in the experiment, is not able
to send data at a rate high enough to avoid large queuing
delays. BBR actively probes for new round-trip time (RTT)
measurements at most once every 10 seconds (more frequent
probes would sacrifice throughput) [21]. So, when the DC
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controller changes QoS every 5 seconds, BBR incorrectly es-
timates that 99% of LOPRI flows have the RTT of the HIPRI
path, and maintains fewer bytes in flight as a result (average
congestion window is over 55% smaller), adding queuing
delay. If we change the control period to be one minute, the
difference between “Stable QoS” and “Flip Flop” disappears.
Challenges in minimizing QoS churn. To maintain QoS
stability, one could try to ‘pin’ each flow to its QoS for some
minimum threshold of time. However, doing so would impact
the accuracy with which the DC controller can downgrade
the desired fraction of a flowgroup’s traffic, since only a
subset of flows would be eligible for QoS changes.
Alternatively, one could hash every flow’s identifier and

downgrade the traffic of those flows whose hashed identifier
falls below a threshold. The DC controller can assign more
(less) of a flowgroup’s traffic to LOPRI by increasing (decreas-
ing) this threshold. The problem, however, is the order in
which flows are downgraded and upgraded.When the thresh-
old rises to downgrade additional flows, and later drops to
upgrade flows, the most recently downgraded flows would
be upgraded; vice-versa when the threshold subsequently
is increased again. This behavior maximizes the worst-case
QoS churn for individual flows.
Rethinking hashing-based QoS downgrade. In HEYP,
we introduce caterpillar hashing as a flow selection mecha-
nism that minimizes QoS churn. Caterpillar hashing chooses
which flows to downgrade using a range of the hash space,
rather than a threshold. As illustrated by Figure 5, when
we need to increase (decrease) the fraction of flows that are
downgraded, we grow (shrink) the range by moving the
upper (lower) threshold. This behavior upgrades the flows
that were downgraded earliest, and therefore, maximizes the
minimum time each flow spends at a particular QoS.
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Hashing-based approaches randomly select flows for down-
grade, and therefore have lower accuracy compared to using
a knapsack solver. However, in the following section, we ex-
plain how HEYP’s DC controller leverages feedback control,
and this largely mitigates any concerns about accuracy.

4.3 Mitigating harmful app–controller interactions

Since existing DC controllers configure tasks (§2.1), they
could be extended to measure what fraction of usage is above
approval, apply caterpillar hashing to select tasks for down-
grade, and then compute rate limits for LOPRI tasks. The
controller could use caterpillar hashing to ensure that the
fraction of a flowgroup’s traffic which is downgraded equals
1 - (total usage)/(HIPRI admission), where HIPRI admission
is equal to approval, except under extreme failure scenar-
ios. However, this approach can lead to harmful interactions
between the DC controller and applications.
Consider the HTTP workload used to generate Figure 4.

When LOPRI flows experience congestion, the HTTP proxy
would observe longer queues for LOPRI tasks compared to
HIPRI tasks, and shift more of its load to the HIPRI tasks. This
would cause the flowgroup to have HIPRI usage greater than
its approval, since the set of HIPRI tasks is now transmitting
bandwidth that used to be spread across a larger set of tasks.
However, the DC controller would not react because the
fraction of usage above approval is unchanged; after all, the
load has simply shifted between tasks. Had the DC controller
instead used a knapsack solver, it would have seen that the
flowgroup’s HIPRI usage is higher than intended and selected
a different subset of tasks to downgrade. But, the application
will again react by shifting its usage around. To prevent this
cat-and-mouse game, which will result in high QoS churn
and put approval satisfaction for other flowgroups at risk,
let us first consider two strawman approaches.
Strawman 1: Downgrade jobs as a unit. Most cluster
management systems have some notion of a job that is used
to deploy applications [10, 37, 64]. To downgrade a portion
of any flowgroup, if we were to downgrade at the granularity
of jobs, the application would be unable to respond in the
above manner. However, some applications are composed of
multiple jobs, and since the DC controller has no knowledge
of which jobs are critical for the application, downgrading
an entire job may degrade the user experience.
Strawman 2: Rate limit HIPRI traffic. Alternatively, one
could use rate limiting to prevent an application from send-
ing more HIPRI traffic than its approval, as we did in Figure 4.
However, despite its use in production WANs, distributed
rate limiting suffers from inaccuracy and risks throttling
tasks unnecessarily [59] (see also §5.2.3). For LOPRI traffic,
we believe the costs of rate limiting are worth the benefit: it
enables policy-based sharing and avoids high loss on fully-
loaded links. In contrast, for HIPRI traffic, we seek to prevent
problematic interactions between applications and the DC
controller without rate limiting.

Config: 𝑢𝑝𝑔𝑟𝑎𝑑𝑒𝐼𝑛𝑐 = 0.2 (fixed frac. to upgrade)
𝑝𝑟𝑜𝑝𝐺𝑎𝑖𝑛 = 0.5 (proportional gain)
𝑒𝑟𝑟𝑁𝑜𝑖𝑠𝑒 = 0.05 (noise in usage measurement)
𝑘𝐶𝑜𝑎𝑟𝑠𝑒 = 2 (task err multipler)

Output: fraction of usage to downgrade (upgrade if < 0)

if total usage < HIPRI admission then

return 𝑢𝑝𝑔𝑟𝑎𝑑𝑒𝐼𝑛𝑐

end

𝑒𝑟𝑟 ← (HIPRI usage - HIPRI admission) ÷ total usage
𝑐𝑜𝑎𝑟𝑠𝑒𝑛𝑒𝑠𝑠 ← 𝑘𝐶𝑜𝑎𝑟𝑠𝑒 ×max task usage ÷ total usage
if 0 < 𝑒𝑟𝑟 < max(𝑒𝑟𝑟𝑁𝑜𝑖𝑠𝑒, 𝑐𝑜𝑎𝑟𝑠𝑒𝑛𝑒𝑠𝑠) then

return 0
end

return 𝑝𝑟𝑜𝑝𝐺𝑎𝑖𝑛 × 𝑒𝑟𝑟

Algorithm 2: Feedback control determines what fraction

of usage to downgrade. The configuration parameters

were tuned against a range of simulated workloads (§B).

Search for application bottleneck. To avoid the down-
sides of these strawman approaches, we use the following
observation: applications can respond to QoS downgrade
by shifting around load only because their HIPRI tasks are
able to handle additional load. Eventually, each task becomes
limited by some resource other than WAN link capacity, e.g.,
the machine’s network card. Therefore, if we ensure that
all HIPRI tasks are saturated, the application will not shift
additional load to HIPRI tasks.

To search for this operating point – where the HIPRI tasks
are saturated enough that the application does not shift addi-
tional load over from LOPRI tasks – HEYP employs feedback
control. Although the DC controller does not know exactly
when tasks become saturated, it can iteratively increase the
fraction of tasks that are downgraded. We assume that no
individual task can saturate an approval, and hence, HIPRI
tasks will eventually become saturated.
In each control period, HEYP’s DC controller revises the

fraction of downgraded tasks in proportion to the relative
error in enforcing a flowgroup’s HIPRI admission. Using
caterpillar hashing, the controller increases (or decreases)
the fraction that is downgraded in proportion to (HIPRI usage
- HIPRI admission) / flowgroup’s overall usage. This simple
form of control [65] mitigates the harmful interaction. As an
added benefit, it improves the accuracy of the DC controller’s
selection of tasks to downgrade. If the downgraded tasks
combined have too much or too little usage, the feedback
controller will observe this error and try to eliminate it.

There remain two concerns that need to be addressed.
• First, when usage is below the HIPRI admission, we do not
know what fraction of the usage should be upgraded to
HIPRI. It could be that the flowgroup’s demand is below
the HIPRI admission; in this case, the correct response
would be to upgrade all tasks. On the other hand, it could
be that the controller has downgraded too much traffic
and should simply upgrade a small portion of it. HEYP
tries to balance its behavior for these different cases by
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always upgrading 20% of traffic. This provides a slower, but
hopefully acceptable response to the first case (five control
periods are needed to upgrade the entire flowgroup) and
reduced QoS churn in the second case.
• Second, HEYP ignores excess HIPRI usage in two cases.
The first case is when the HIPRI usage is within mea-
surement noise of the HIPRI admission. This threshold
can be determined using an online estimator or offline
analysis. For simplicity, our prototype uses a static value.
The second case is when the HIPRI usage exceeds the
HIPRI admission by a small multiple of the maximum
task usage. The intuition is that task usages may be too
coarse to achieve the desired split, and the maximum task
usage serves as an overestimate of the coarseness of all
task usages. To prevent the resulting excess HIPRI usage
from causing approval violations, the network provider
should provision enough headroom to accommodate both
cases. As noted at the start of §4, we expect the required
headroom for cloud WANs to be low.
Algorithm 2 presents HEYP’s final control logic for revis-

ing the fraction of tasks to downgrade. In Appendix B, we
empirically show that HEYP’s DC controller provides low
QoS churn and quickly converges to an accurate split under
a variety of workloads.

5 Evaluation

We evaluate HEYP’s performance in two parts. First, using
production traces from BigCloud’s WAN and a discrete-
event simulator, we evaluate the benefits of HEYP’s global
controller for satisfying both approvals and demands across
data centers. Then, we deploy a prototype of HEYP’s DC
controller on CloudLab [27] and evaluate its ability to enforce
HIPRI admissions (using QoS downgrade) and its utility on
an application workload. The primary takeaways from our
evaluation are as follows:
• HEYP offers the best combination of approval and demand
satisfaction: 99% availability of approved bandwidth for
87–99% of flowgroups (better than even static approval-
based allocation) while offering similar demand satisfac-
tion as dynamic allocation, which is able to satisfy only
7–9% of approvals 99% of the time.
• In a sensitivity analysis, we find that dynamic allocation
falls short of the approval satisfaction offered by HEYP
even if control plane delays are cut by 5× and demands
change slowly. In addition, HEYP delivers high approval
satisfaction even if demands change twice as fast as in Big-
Cloud’s WAN while the approval satisfaction of dynamic
allocation is further reduced.
• When applied to an HTTP workload, HEYP offers the best

combination of isolation and performance. When compet-
ing against a flowgroup with excess traffic, the latency
and throughput of a within-approval flowgroup are un-
changed compared to static, approval-based rate limiting.
In addition, the additional bandwidth HEYP provides to
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Figure 6: Architecture of our inter-DC simulator.

the above-approval flowgroup improves throughput to
within 12% of the theoretical max.

5.1 Predictability and efficiency across DCs

To evaluate HEYP’s impact on sharing bandwidth between
flowgroups spread across many data centers, we use a cus-
tom, discrete-event simulator. Simulation enables us to evalu-
ate designs that are impossible or difficult to realize (e.g., we
consider a hypothetical control plane that acts 5× faster than
the state-of-the-art). Our simulator models delays between
network components and captures the impact of inaccurate
demand estimates (Figure 6). In Appendix A, we describe our
simulator in detail, including how we validate its fidelity.

5.1.1 Trace data, allocation algorithms, andmetrics

We use traces obtained from BigCloud’s WAN containing
data for three separate weeks in 2019. Each trace contains
snapshots of the topology and demand between data centers
– as estimated by the production system – measured once a
minute. Bandwidth approvals were derived from production
data collected from the BigCloud WAN and adjusted to ac-
count for differences between the simulation and production
environments. BigCloud ensures that (given fast controller
response) approvals can be met under appropriate failure
scenarios. For each type of control plane delay (e.g., time
taken to install a new set of routes), our simulations mimic
the distribution seen in production.
We implement and compare HEYP against the following

approaches in our simulator.
• Static allocation policy is oblivious to demands.When the
Global Broker observes a new topology or routing (resp.,
when the Traffic Engineering (TE) Controller observes a
new topology), it computes new admissions (resp., new
routes) given the approvals as demand.
• Dynamic policy approximates the behavior of B4 [40,
46] and SWAN [38]. Unlike Static, it reacts not only to
topology changes but also when demands change, in order
to allocate above-approval traffic after satisfying within-
approval demands. For any flowgroup, all traffic traverses
one set of paths and uses the same QoS level.
• We also consider two variants of Dynamic which strike

intermediate tradeoffs between approval and demand satis-
faction. RA+Dynamic (for Reserve Approval + Dynamic)
assumes that demand = max(approval, demand). Hence,
it will allocate at least as much capacity as Static but will
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% of flowgroups with ≥ 99.9% approval
satisfaction

% of flowgroups with ≥ 99% approval
satisfaction

Mean demand satisfaction (%)

Week 1 Week 2 Week 3 Week 1 Week 2 Week 3 Week 1 Week 2 Week 3
Static 37 41 46 81 97 94 55 44 58

RA+Dynamic 34 34 46 80 97 94 70 74 73
Dynamic+JA 3 2 3 9 13 9 81 79 84
Dynamic 3 2 4 7 9 7 86 88 89
HEYP 37 43 51 87 99 97 86 83 90
Legend 0–20 20–40 40–60 60–80 80–100 0–20 20–40 40–60 60–80 80–100 0–60 60–70 70–80 80–90 90–100

Table 1: Simulation results for BigCloud network traces across three weeks.

attempt to accommodate above-approval traffic when de-
mands change. Dynamic+JA (for Dynamic + Jump to
Approval) assumes that the demand for any flowgroup be-
ing throttled is equal to its approval, thereby preempting
the need for multiple iterations of global reconfiguration
for within-approval demand to ramp up. The throttling
signal is propagated together with the usage information.

Allocation algorithms. In all approaches, the Global Bro-
ker and TE Controller first allocate bandwidth to satisfy
within-approval demands, then use residual capacity to sat-
isfy above-approval demands. In either phase, they enforce
max-min fair sharing across flowgroups. To compute routes,
the TE Controller selects the shortest available path for each
flowgroup and computes a max-min fair allocation of band-
width across these paths. This process loops until either all
demands are satisfied or all links are saturated. Traffic for a
flowgroup is split across the routes allocated for it in the ratio
of the admission computed for each route. When a link fails,
flowgroups may experience traffic loss until the controller
installs new routes. For more details, see Appendix E.
Metrics. We examine the approval and demand satisfaction
of each approach. We consider a flowgroup’s approval to be
satisfiedwhenever its usage is ≥ 0.95×min(approval, demand).
We compute demand satisfaction as the sumof per-flowgroup
usages divided by the sum of their demands. We use this met-
ric – as opposed to link utilization – to measure efficiency
because a higher value directly corresponds to a better use
of network resources.

5.1.2 Results Table 1 presents the results for each of
the three week-long traces; we consider two commonly stud-
ied [20, 39, 69] (99% and 99.9%) availability targets.
Approval satisfaction for HEYP and Static are similar, as

expected, since Static’s allocation is the same as that used
in HEYP’s HIPRI allocation. However, Dynamic satisfies up
to twice the demand of Static, a result of it’s allocation be-
ing demand aware. In most cases, HEYP achieves similar
demand satisfaction to Dynamic, but HEYP consistently of-
fers significantly higher availability of approved bandwidth.
One reason for Dynamic’s poor availability is the duration
of approval violations: 20% of violations are resolved only
after multiple iterations of global control.

Dynamic+JA and RA+Dynamic hit intermediate tradeoffs
in between Static and Dynamic. The reason for this is that

Legend: 0–20 20–40 40–60 60–80 80–100
Control
Plane
Speed

Rate of Demand Change (larger is faster)
Dynamic Static HEYP

0.5× 1.0× 2.0× 0.5× 1.0× 2.0× 0.5× 1.0× 2.0×
5× Faster 59 25 15 88 87 87 96 94 93
Normal 15 9 8 87 87 86 93 91 90

5× Slower 4 4 4 60 60 59 61 59 59
(a) % of flowgroups with ≥ 99% approval satisfaction

Legend: 0–60 60–70 70–80 80–90 90–100
Control
Plane
Speed

Rate of Demand Change (larger is faster)
Dynamic Static HEYP

0.5× 1.0× 2.0× 0.5× 1.0× 2.0× 0.5× 1.0× 2.0×
5× Faster 95 94 93 55 55 55 88 88 87
Normal 89 86 84 55 55 55 87 86 85

5× Slower 78 75 75 55 55 55 84 83 82
(b) Mean demand satisfaction (%)

Table 2: Performancewhen varying both the speed atwhich

controllers react and the rate at which demands change.

Dynamic+JA and RA+Dynamic reserve bandwidth based on
approvals, even when demands are lower than approvals.
Since RA+Dynamic does so always, it offers lower demand
satisfaction like Static; whereas, since Dynamic+JA allocates
for approval only once a flowgroup is throttled, it offers low
approval satisfaction like Dynamic.
Impact of tail latency. In our traces, the time from when
the DC Controller detects a change in demand until new
admissions (routes) are installed is 3× (1.5×) larger at the
99th percentile than at the median. To investigate whether
high tail latency is negatively impacting tail approval satis-
faction, we simulate Week 2 with all control delays limited
to the 45–55th percentile range of the distribution observed
in production. We see little increase in Dynamic’s approval
satisfaction; only 13% (4%) of flowgroups have 99% (99.9%)
approval satisfaction. We conclude that even the median
global control delays in such a heavily engineered WAN are
too high to accommodate the churn in demand.
Sensitivity to changes inworkload and setting. To eval-
uate each approach in a broader range of settings, we vary
the inputs from BigCloud along two dimensions: the rate at
which demands change and the control plane’s speed (both in
the delays incurred and the frequency with which controllers
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Figure 7: Performance under a global controller outage

(starts after 1 hour and lasts for 60 min).

run). Table 2 compares Dynamic, Static, and HEYP on a 48-
hour trace during Week 1. We make several observations
regarding approval satisfaction:
• Dynamic is highly dependent on timely responses to de-

mand changes. Between the easiest scenario (fast control
plane and slow-changing demands) and the hardest (slow
control plane and fast-changing demands), fraction of ap-
provals satisfied with Dynamic drop by over 10×.
• Regardless of the control plane’s speed, approval satisfac-
tion with HEYP and Static is independent of the rate of
demand change. Whereas, Dynamic significantly suffers
when demands ramp up faster; even with a fast control
plane, the fraction of approvals receiving 99% availability
with Dynamic drops by 4× when going from a slow to a
fast rate of demand change.
With respect to demand satisfaction, Static is poor across

the board since it does not react to changes in demand or
admit above-approval traffic. In contrast, a slower control
plane significantly decreases demand satisfaction with Dy-
namic but has no impact on HEYP; by allocating HIPRI routes
and admissions based on approvals, not within-approval
demands, HEYP allows within-approval usage to ramp up
without any action by the global controller. With a faster
control plane, both Dynamic and HEYP more quickly adapt
to accommodate changing above-approval demands.
Performance under a global controller outage. An ex-
treme case of a slow control plane is when the global con-
troller is down. To evaluate performance under such a sce-
nario, we select a 3-hour window from Week 1 and simulate
a failure of both the Global Broker and the TE Controller. No
data plane failures take place during the outage.

Figure 7 shows that HEYP consistently satisfies nearly all
approvals during the outage, whereas approval satisfaction
with Dynamic drops shortly after the control plane outage
begins. While both approaches have degraded demand sat-
isfaction during the outage, HEYP satisfies more demand
than Dynamic because it pre-allocates capacity to satisfy
any increase in within-approval demands. At other times,
HEYP and Dynamic provide similar demand satisfaction.

EDGE

LOPRI

10GAA
56 tasks

(14 hosts) CLIENT
2 Load Gens

WA
4 tasks

(4 hosts)

HIPRI30 ms
90 ms

50 ms Shared bottleneck 
for AA & WA

GW

GW

Envoy 

Envoy

10G

Priority-
enforcing

switch

Backend DCs

Figure 8: Testbed setup for HTTP workload. We run a sep-

arate DC controller for each data center (not shown).

5.2 Testbed evaluation

Next, we deploy a prototype of HEYP’s DC controller and
study its ability to accurately enforce HIPRI admissions (us-
ing QoS downgrade) with low QoS churn. In addition, we
examine the impact of QoS downgrade on an application
workload, both from the perspective of isolating any within-
approval flowgroup and maximizing an above-approval flow-
group’s ability to use spare capacity.

5.2.1 Applicationworkload and setup Sinceweb ser-
vices are highly sensitive to latency inflation and bandwidth
shortages, we evaluate HEYP against HTTP workloads and
emulate the architecture of production web services. As
shown in Figure 8, clients (which use Fortio [14], a load
generator) issue requests in an open loop to EDGE, where
one of two Envoy [8] proxies examines which backend the
request is for and directs it to an appropriate backend server.
Upon receiving the proxied request, the backend generates
a response that is then forwarded by the proxy back to the
client. Each backend task is registered with the local DC
controller, and enforces QoS downgrade and rate limiting
policies via standard Linux facilities.

We deploy backends onto CloudLab’s xl170 machines (10
cores) connected via 10 Gbps links to a Dell S4048-ON switch.
The switch is configured to enforce strict priority queuing
between HIPRI and LOPRI traffic. The Envoy proxies and
Fortio clients run on dedicated c6525-25g machines (16 cores)
and are connected to each other via a 25 Gbps network. Each
Envoy proxy reaches the backend servers via its own gateway
server (xl170) that is connected to both networks. Following
existing systems [46], we set the DC controller to compute
new QoS assignments and rate limits once every second
(we show that this rate is feasible with millions of tasks in
Appendix C).

We run two backend services, logically separated into
two “data centers”: AA (for above approval) and WA (for
within approval). We simulate latency between them and
EDGE using netem [35]. The approvals for AA→EDGE and
WA→EDGE are 2 and 12 Gbps, respectively. WA’s approval
was chosen to exceed half of the bottleneck link’s capacity
(20 Gbps, 10 Gbps for each EDGE proxy) so that a max-min
fair distribution of the capacity would violate the approval.

We compare HEYP to the following approaches:
• NoCongestion. This approach estimates the best through-

put and latency that AA can achieve irrespective ofwhether
QoS downgrade or rate limiting is employed, i.e., when
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bandwidth is the only constraint. We obtain this estimate
by reducing WA’s sending rate so that the sum of AA and
WA demands are satisfied without overloading any links;
empirically, we have determined that the bottleneck link
can sustain up to 90% utilization.
• Static. By rate limiting each flowgroup to its approval,
this approach prioritizes providing isolation for WA at
the cost of AA’s demand satisfaction. This serves as a
baseline for comparing QoS downgrade and rate limiting
as admission control mechanisms. Our implementation
follows BwE’s Job Enforcer [46]; in particular, we have
implemented both dynamic oversubscription (based on
workload burstiness) and static oversubscription (scale up
capacity by 1.25×).
• KnapDown. To study the utility of feedback control and

caterpillar hashing, we downgrade QoS using a knapsack
solver, the initial approach described in §4.2.
• NoLimit. To demonstrate that some form of control is
needed to satisfy approvals, we consider the effects of
using neither QoS downgrade nor rate limiting.
When studying AA’s performance, we focus on scenarios

where the tenant has configured the application to degrade
gracefully under overload, and therefore enable load shed-
ding. To ensure that any requests that are served maintain
reasonable latency [6, 19], Envoy routes requests to the least-
loaded backend server and eagerly rejects requests for WA
when the corresponding backend servers become overloaded.
When studying an approach’s ability to isolate WA’s traffic
from a noisy neighbor, we disable load shedding for AA’s
traffic to ensure that we are not measuring the effects of
AA’s load shedding, but the network isolation mechanism.

5.2.2 Performance under gradualworkload change

We start by examining the performance of a workload that
changes gradually, e.g., user traffic increasing over a day. We
set AA’s demand to 12 Gbps and ramp up WA’s demand at
a constant rate from 6 to 12 Gbps over 2 minutes. Figure 9
presents the latency and throughput for both backends.
Performance isolation for WA. Static and HEYP both
provide strong isolation for WA; latency matches both No-
Congestion and the case where AA has no above-approval
traffic. With NoLimit, bandwidth is shared based on the be-
havior of congestion control, not on approvals. As a result,
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Figure 10: Unlike HEYP and Static, KnapDown admits ex-

cess HIPRI traffic when applications redistribute load.

WA’s performance degrades when AA, which contains 14×
as many tasks as WA, captures more bandwidth than it.
Benefit of above-approval bandwidth forAA. Of the ap-
proaches that satisfy WA’s approval, we see that HEYP offers
the best combination of latency and throughput (throughput
is 88% of NoCongestion and 1.8M requests complete within
150 ms) compared to Static (throughput is 9% of NoCon-
gestion and only 120K requests complete in 150 ms). The
12% gap in throughput between HEYP and NoCongestion is
due to load shedding; once disabled, AA’s throughput with
HEYP matches NoCongestion, albeit at an even higher la-
tency (above 400 ms).

Note that the low latency that NoLimit and NoCongestion
offer to AA is an artifact of our experimental setup. We inject
60 ms of additional propagation delay for LOPRI traffic to
emulate the case where it traverses a longer path than HIPRI
traffic. In practice, this should only occur when the global
controller observes high utilization on a bottleneck link for
HIPRI traffic. In this case, NoLimit and NoCongestion would
also need to use the longer path for a portion of their traffic,
but our testbed is unable to capture this.
Utility of feedback control on limiting harmful app–

controller interactions. For the sameworkload as Figure 9,
Figure 10 shows that the gap between the approval andHIPRI
usage for AA is consistently higher when using KnapDown
than HEYP. In each instance where KnapDown is able to
eliminate all excess HIPRI, we see that AA quickly returns to
using more HIPRI than its approval. When the DC controller
runs again, KnapDown makes no attempt to maintain stable
QoS assignments unlike HEYP, which leverages caterpillar
hashing and feedback control. As a result, KnapDown per-
forms 27× the number of QoS changes as HEYP. Of the three
approaches shown, HEYP provides the lowest mean absolute
error: for the top case, it is within 9% of the approval vs 14%
using Static and 45% using KnapDown.

5.2.3 Performance under suddenworkload change

Next, we stress test HEYP’s ability to keep HIPRI usage near
the approval under sudden workload changes. We keepWA’s
demand static at 12 Gbps and configure AA’s demand to rise
sharply after 20 seconds from 3 to 9 Gbps, then drop after
a minute to 3 Gbps, and rise one last time after another 60
seconds to 9 Gbps.
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Figure 11: The accuracy of HEYP and Static when trying

to keep AA→EDGE’s HIPRI usage near its approval under

sudden demand changes (at 20s, 80s, and 140s).

Figure 11 presents the HIPRI error for AA when Envoy
sheds load, and when it admits all requests. Focusing on Fig-
ure 11(top), we see that Static consistently admits 14% more
HIPRI usage than approval allows. The excess HIPRI usage
is due to Static’s oversubscription of bandwidth. With better
tuning, Static’s accuracy may improve, but if we enable load
shedding for AA (see Figure 11(bottom)), we see that Static
frequently throttles AA→EDGE below its approval. This
illustrates the difficulty in tuning approaches that leverage
rate limiting: if we configure Static to oversubscribe the net-
work less, than it may perform better in the former case, but
it would throttle even more aggressively in the latter case.
In contrast, HEYP’s controller adapts without tuning to

the two workloads. The inaccuracy of its rate limiting only
impacts how much LOPRI capacity HEYP delivers, not its
approval satisfaction. HEYP will satisfy the approval even
when it downgrades too much traffic, except when LOPRI
is sufficiently congested or throttled. In Figure 11, HEYP
satisfies AA→EDGE’s approval 96% of the time in the bottom
case, and Static satisfies the approval only 80% of the time
(both have 100% satisfaction under no load shedding).

6 Discussion

Weighted fair queuing. HEYP’s global allocation can be
adapted for networks that share bandwidth across QoS lev-
els using weighted fair queuing, rather than strict prioriti-
zation. The key is to account for the reservation of band-
width to LOPRI traffic. For example, if the ratio of weights
for HIPRI:LOPRI QoS is 8:2, then LOPRI traffic can use 20%
of the link’s bandwidth regardless of the HIPRI usage. In
this case, we would scale down the link capacities in Phase
1 (§4.1) to 80% of the original values, so that HIPRI traffic
always receives its full admission.
Multiple approval SLOs. In this paper, we aim tomaximize
the satisfaction of a single, high-priority class of approvals.
However, HEYP can support multiple levels of prioritized
approvals by iteratively allocating routes and admissions for
each class, with lower classes using the residual capacity left
over from higher classes. The relative importance of a high-
priority flowgroup’s above-approval traffic compared to a
lower-priority flowgroup’s within-approval traffic depends
on the cloud provider’s business policy. For example, if cloud

provider wanted to offer two bandwidth approval SLOs on a
network with three QoS levels – HIPRI, MEDPRI, and LOPRI
– the provider could choose to treat above-approval traffic
for higher SLO approvals as equivalent to within-approval
traffic for lower SLO approvals, marking both as MEDPRI.

7 Related Work

Software-defined WANs. The rising demand for network
bandwidth across data centers has led to the development of
many global privateWANs, e.g., byMicrosoft [38], Google [40],
and Facebook [43]. These networks use centralized demand
monitoring and traffic engineering to cost-efficiently transfer
large volumes of data, though scaling them presents chal-
lenges [15, 29, 39]. While HEYP builds on these systems and
shares a similar software-defined architecture, it aims to sat-
isfy bandwidth approvals as a primary objective without
sacrificing network utilization.
Bandwidth isolation between cloud tenants. Many prior
systems aim to guarantee bandwidth between virtual ma-
chines in the data center, ranging from approaches that sim-
ply isolate tenants from one other [18, 32, 49], to others
which provide work conservation [41, 58], to ones that en-
force rich notions of fairness across tenants [57]. Adapting
these approaches to the WAN setting is not straightforward.
Providers have less flexibility with regards to application
placement, control plane delays are significantly larger, and
bandwidth guarantees are at the granularity of flowgroups,
each of which spans a large number of hosts.

BwE [46] and SWAN [38] provide WAN bandwidth isola-
tion by dynamically controlling the sending rates of tenants.
HEYP differs from these approaches by combining static and
dynamic allocation through the use of QoS downgrade.
Fault-tolerant routing. Many approaches have been pro-
posed to quickly restore network connectivity following a
failure [51, 56, 66, 68], and fault-tolerant traffic engineering
approaches [20, 42, 50, 63] further aim to ensure that the re-
maining paths after a failure can support the admitted traffic.
These approaches can be used together with HEYP to en-
sure high approval satisfaction without relying on the global
controller reacting to either demand or topology changes.
QoS downgrade. Prior work has used QoS downgrade to
provide statistical assurances of capacity to end users of the
Internet [22, 23]. Unlike HEYP, these approaches do not scale
to the large flowgroups present in data centers. HEYP ac-
counts for the fact that no individual gateway can process
all of the traffic belonging to a tenant, and it enables individ-
ual flowgroups to consume large quantities of capacity by
allowing for any single flowgroup’s traffic to be sent along
multiple routes. Our use of separate routes for HIPRI and
LOPRI traffic, however, introduces the need to maintain QoS
stability, which HEYP explicitly aims to provide.
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8 Conclusion

Existing control plane architectures for global-scale private
WANs are unable to offer highly available bandwidth guaran-
tees at high utilization. A key cause is their dependence on a
fundamentally slow central controller to reconfigure the net-
work in response to changing traffic demands. In this paper,
we showed how to remove any reliance on the global con-
troller for satisfying bandwidth guarantees by leveraging the
data plane’s ability to prioritize traffic based on QoS levels.
Our HEYPWAN architecture uses the central controller only
to maximize efficiency and handle topology changes, and
we account for interactions with other layers of the network
stack that result from admitting surplus traffic at a lower
QoS along a separate set of routes. We showed that HEYP
is able to simultaneously offer predictability and efficiency
across a range of workloads and settings.
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Figure 12: Demand satisfaction (normalized to have the

sameminimum andmaximum values) in production versus

simulation. The correlation coefficient (r) and p-value are

noted.

A Inter-DC network simulator

We use a custom simulator because existing software has
high overhead for evaluating WAN control planes [2, 3, 24,
36], licensing concerns [5], or focuses only on traffic engi-
neering [47]. As in prior work [47], we model the topology
at a data center level and apply max-min fair sharing of link
bandwidth across flows. In addition, our simulator captures
several features that govern the behavior of software-defined
WANs.
Network controllers. As in B4 [40, 46], our simulator em-
ploys separate global controllers to select routes and admis-
sions: the Traffic Engineering (TE) Controller and the Global
Broker, respectively. Since we model traffic at the data cen-
ter level, the simulated DC Controllers cannot configure
individual tasks. Instead, we try to capture the impact that
partitioning traffic into HIPRI and LOPRI has on approval
and demand satisfaction. For example, if 30% of demand is
marked LOPRI and usage drops to the approval, 30% of de-
mand will remain LOPRI until the DC Controller revises the
split. Appendix F contains the logic for each controller.
Modeling delays and inconsistency of state. We model
the WAN as a set of processes that share no state. Processes
send messages to a each other, scheduling their arrival at a
future time. This model captures both the delays in controller
response and any inconsistency of state across controllers.
Capturing demand uncertainty. An Evaluator process
(see Figure 6) tracks the network state and computes metrics
(e.g., demand satisfaction). The Evaluator broadcasts changes
in any flowgroup’s usage to all controllers. As a result, con-
trollers may not observe rapid increases in a flowgroup’s
demand until several control periods have passed.
Validation. To confirm that the data output by our simula-
tor is meaningful, we compare the mean, hourly demand sat-
isfaction reported by BigCloud’s production system against
our simulated adaptation of it (see Dynamic in §5.1). Fig-
ure 12 shows that there is a statistically significant, positive
correlation between the demand satisfaction observed in our
simulation and in production. While the production system
contains additional heuristics to improve performance, our
simulation is a reasonably good predictor for the demand

satisfaction seen in production: time frames in which the
production system has higher (lower) demand satisfaction
are also times in which the simulator performs well (poorly).

B Large-scale simulation ofHEYP’sDC controller

We use monte carlo simulation to study the behavior of
HEYP’s DC controller across a wider range of workloads
than those run in §5.2.
Setup. In each run, we generate a static set of per-task
demands according to a desired distribution and repeatedly
invoke the DC controller against it to either downgrade
traffic (if all tasks are HIPRI) or upgrade traffic (if all tasks
are LOPRI). We set the approval to one-half of the expected
demand, cap each host to send at most 40 Gbps, and set the
available LOPRI bandwidth to 25% of the aggregate demand.
Demand distributions. We simulate 200 tasks and distrib-
ute demand across tasks according to one of the following
distributions (all have a mean usage per task of 2 Gbps):
• UNI: The demand of each task is chosen between 0 and 2
Gbps uniformly at random.
• EM-5%: The top 5% of tasks have demand chosen between

30 and 34 Gbps uniformly at random. The remaining tasks
have demand between 0 and 842 Mbps, also chosen uni-
formly at random.
• EXP: The demand of each task is chosen from an exponen-
tial distribution.
• FB15: We generate demands for the four types of WAN-

using applications at Facebook [60], and scale them so that
the distribution mean is the desired 2 Gbps. We assume the
fraction of tasks belonging to each application is propor-
tion to its demand, and evenly spread each application’s
demand across its tasks with a random value of 5% noise
added.

Results. On average, HEYP’s DC controller converges –
defined as the DC controller taking no actions for 5 consec-
utive periods – in under 18 control periods 95% of the time
(Table 3), and we found that it always converged. For EXP,
FB15, and UNI, overage (excess HIPRI usage) was approxi-
mately 5% of the approval and no shortage (volume of usage
we failed to admit at HIPRI) remained once the controller
converged, but intermediate states exhibited higher overage
(mean up to 14%) and shortage (mean up to 19%. The higher
amounts of overage compared to shortage are a direct con-
sequence of HEYP’s bias to prefer it (§4.3). EM-5% exhibits
higher amounts of overage – after converging the mean is up
to 15% – due to the coarseness of demands. Each “elephant”
task carries approximately 8% of the demand, and so the DC
controller stops reacting once overage is twice this value.

C Scalability of DC controller

The faster the DC controller can react to changes in demand,
the more accurate it can enforce admissions and avoid throt-
tling. However, in today’s clouds, individual tenants may run
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Demand Dist. EM-5% EXP FB15 UNI
Init. % Downgraded 0 100 0 100 0 100 0 100

Convergence Time (#periods) 4.72 8.8 12.38 14.89 7.83 10.07 17.13 14.27
No. of QoS changes undone 3.89 5.2 6.56 7.05 3.98 4.77 9.58 5.39

No. of Oscillations 0.25 0.23 1.88 1.61 0.81 0.66 2.59 1.63
Final Overage (%) 15 11 4 4 6 4 3 3
Final Shortage (%) 0 0 0 0 0 0 0 0

Intermediate Overage (%) 23 2 10 2 14 2 7 2
Intermediate Shortage (%) 1 13 0 7 0 10 0 7

Table 3: Performance of HEYP’s DC controller when downgrading part of a flowgroup across a range of simulated settings.

To compute the value of each cell, we take the mean value across 100 monte carlo runs. Convergence time is measured in

control periods. Overage and shortage are measured both once the controller has converged (“Final Overage”) and during the

period before convergence (“Intermediate Overage”). Compare with the number of QoS changes that are unintended against

the number of QoS changes expected for each case (100, since we expect to downgrade or upgrade roughly half of the tasks in

each case).

millions of tasks [67]. For this reason, we optimize the reac-
tion time of our prototype’s DC controller. The partitioning
of traffic into HIPRI and LOPRI, done via caterpillar hashing
and feedback control, is constant time. Therefore, the main
scalability bottlenecks are in the collection of task-level us-
age, and the broadcasting of task-level QoS. We optimize the
former by using threshold sampling [25], this enables over a
50× reduction in input data without sacrificing much accu-
racy. The latter is dependent on the rate of demand change,
e.g., if the usage doubles from the approval over the course
of 5 seconds, then the controller will need to downgrade
approximately half of the tasks within that time frame. Tasks
whose QoS is unchanged do not need to be contacted.
Evaluation Setup. To evaluate how quickly our prototype
DC controller can react to changes in demand for a single
flowgroup, we feed usage data for 1 million simulated tasks
(the usage data is transmitted via RPCs to a real DC controller,
but no such tasks exist). The flowgroup’s demand cycles
between 50% of its approval to 150% of its approval and back
every 10 seconds. Each task carries one one-millionth of the
flowgroup’s overall demand, and we configure the system
to sample usage from approximately 1.6% of tasks. The DC
controller runs once every 400 ms.
Results. Figure 13 shows that HEYP’s DC controller is able
to respond to changes within 500 ms. If the DC controller
perfectly eliminated over usage (or under usage) of HIPRI ev-
ery iteration, this would imply that the DC controller would
bound HIPRI usage to within 10% of the approval (for work-
loads which grow or shrink their demand by 10% of their
approval every 500 ms). However, HEYP’s feedback control
requires more than one iteration to obtain perfect accuracy,
as each iteration attempts to eliminate half of the error, and
so the error may persist for several seconds.

The gradually increasing slope is a result of smearing the
arrival times of usage data. In order to avoid alternating
between periods of no work and overload at the DC con-
troller, we configure each task to sleep a random period
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Figure 13:Delay between tasks sendingusage to theDC con-

troller and receiving a QoS assignment.

before transmitting their initial usage data to the DC con-
troller. This spreads the load on the DC controller over time
and enables it to react to a greater number of tasks, albeit
with unequal response time.

D Additional results for sensitivity analysis

Below are the percent of flowgroups with 99.9% approval
satisfaction for the same settings as Table 2.

Legend: 0–20 20–40 40–60 60–80 80–100
Control
Plane
Speed

Rate of Demand Change (larger is faster)
Dynamic Static HEYP

0.5× 1.0× 2.0× 0.5× 1.0× 2.0× 0.5× 1.0× 2.0×
5× Faster 12 7 4 76 72 67 91 87 85
Normal 6 5 3 46 45 43 48 46 45

5× Slower 3 2 2 36 34 35 38 36 36

E Route allocation algorithm used in §5.1

Algorithm 3 provides a detailed description of the routing
algorithm used by all approaches in §5.1. It is similar to the
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greedy algorithm used by B4 [40] and prioritizes satisfying
any within-approval demands before above-approval ones.

Configuration parameters:

Maximum number of paths (i.e. path budget) per
flowgroup

Inputs:

Approvals and demands per flowgroup
Topology annotated with link capacities

Outputs (per flowgroup):

Routes and admissions
// Initialization

1 𝑃𝑎𝑡ℎ𝐴𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 ← {}
// Start by satisfying within-approval demands

2 For all flowgroups 𝑓 , 𝐷 𝑓 ← min(demand𝑓 , approvals𝑓 )
// Main path allocation loop

3 while some flowgroup has positive demand and some link
has positive capacity do

4 𝐶𝑢𝑟𝑃𝑎𝑡ℎ𝑠 ← {}
5 foreach flowgroup 𝑓 with 𝐷 𝑓 > 0 do
6 𝑝 ← next shortest path that avoids links with no

capacity
7 if no such 𝑝 exists or if adding 𝑝 to 𝑅𝑜𝑢𝑡𝑒𝑠𝑓 exceeds

the path budget then
8 𝐷 𝑓 ← 0
9 else

10 𝐶𝑢𝑟𝑃𝑎𝑡ℎ𝑠𝑓 ← 𝑝

11 end

12 Compute a max-min fair allocation of link capacity to
satisfy 𝐷 using 𝐶𝑢𝑟𝑃𝑎𝑡ℎ𝑠

13 Add allocations to admissions and subtract from 𝐷 𝑓

14 𝑃𝑎𝑡ℎ𝐴𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑓 ,𝑝 ← 𝑃𝑎𝑡ℎ𝐴𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑓 ,𝑝 + admission
15 end

// We have satisfied any within-approval demands (if
possible), try to satisfy above-approval demands

16 Set 𝐷 𝑓 ← demand𝑓 −
∑
𝑝 𝑃𝑎𝑡ℎ𝐴𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑓 ,𝑝

17 Repeat loop on Lines 3–15
18 foreach flowgroup 𝑓 do

19 if 𝑑𝑒𝑚𝑎𝑛𝑑𝑓 = 0 then
20 Use the shortest route and set admission to 0
21 else

22 Use routes in 𝑃𝑎𝑡ℎ𝐴𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑓 with each getting a
share of traffic proportionate to the path
admission

23 Set admission to
∑
𝑝 𝑃𝑎𝑡ℎ𝐴𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑓 ,𝑝

24 end

Algorithm 3: Route computation algorithm.

F Discrete-event simulation control logic

Our simulation in §5.1 diverges from the design described
in §4 in two ways. First, route and admission computation

are performed by two separate controllers (Algorithms 4 and
5) similar to B4 [40, 46]). Second, because the the network
traces lack per-task data, the simulated DC controller can
only partition traffic based on usage (Algorithm 6).

Inputs:

Approvals and demands per flowgroup
Topology annotated with link capacities
Route allocation function (see Algorithm 3)

Outputs (per flowgroup): HIPRI and LOPRI routes
1. HIPRI routes, HIPRI admissions
← 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑅𝑜𝑢𝑡𝑒𝑠(approvals, approvals, link capacities)

2. Compute unused link capacity by deducting any link
capacity consumed by the volume of each flowgroup’s
demand that is under the HIPRI admission

3. HIPRI routes, _← 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑅𝑜𝑢𝑡𝑒𝑠(demands - HIPRI
admissions, approvals - HIPRI admissions, link capacities
from Step 2)

Algorithm 4: Allocating routes separately from admis-

sions while accounting for any oversubscription caused

by failures.

Inputs:

Approvals and demands per flowgroup
HIPRI and LOPRI routes per flowgroup
Topology annotated with link capacities

Outputs (per flowgroup): HIPRI and LOPRI admissions
1. Set the HIPRI admissions to a max-min fair allocation of
bandwidth to satisfy approvals using the HIPRI routes

2. Compute unused link capacity by deducting any link
capacity consumed by the volume of each flowgroup’s
demand that is under the HIPRI admission

3. Set the LOPRI admissions to a max-min fair allocation of
bandwidth to satisfy any residual demand using the
LOPRI routes

Algorithm 5: Allocating admissions separately from

routeswhile accounting for any oversubscription caused

by failures.

Inputs:

Usage and admission per (flowgroup, QoS)
Demand per flowgroup
Current fraction of demand marked as HIPRI per
flowgroup

Outputs (per flowgroup):

New fraction of demand to mark as HIPRI
foreach flowgroup do

𝑡 ← min(demand,HIPRI + LOPRI admissions)
Set new HIPRI fraction to min (1,HIPRI limit/𝑡)

end

Algorithm 6: Splitting traffic into QoS levels.
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